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Abstract: We describe an approach to evaluating algorithmic 
and human pe$ormance in directing UAV-based surveillance. 
Itr key elements are a de&ion-theore5c framework fcr 
rneanving the utility of a surveillance schedule and an 
evaluation testbed consisting of 243 scenarios covering a well- 
defined space of possible misswns. We apply this approach to 
two example UAV-based surveillance methodr. a TSP-based 
algorithm and a humandirected approach, then compare them to 
identrfL general stren-,Othr and weaknesses of each method. 

UAV-based Surveillance 
Aerial reconnaissance, surveillance, and other observation 
tasks have been primary aircraft applications since the 
early days of powered flight. They remain key activities in 
domains from military and security operations to land 
management and scientific research. However, airborne 
observation is typically a deadly dull process that strains 
the vigilance and morale of human pilots and makes poor 
use of their costly, hard-won skills. Thus, following the 
rule of “dull, dirty or dangerous,” it is considered an 
excellent application for autonomous vehicles. Unmanned 
aerial vehicles (UAVs) have been employed in this 
capacity for decades, though almost exclusively for 
reconnaissance @OD 2002). Technological improvements 
combined with increasing investment and interest in UAVs 
promise to increase their capabilities and availability, thus 
enabling more diverse and demanding missions. Of 
particular interest to several operational communities are 
missions using UAVs to maintain “situation awareness” by 
continuous or periodic surveillance. 

Autonomous surveillance of spatially separated 
sites raises issues beyond those related to reconnaissance 
at a single site. In particular, since a given UAV can only 
be one place at a time, it must be treated as a limited 
resource that needs to be allocated as effectively as 
possible. Effectiveness, in this case, means providing the 
best possible information to the user at the best possible 
time - i.e. maximizing the value of returned information. 
For any surveillance agent, airborne or otherwise, this 
entails a variety of interlinked choices about which sites to 
visit over the course of a mission, how often to visit each 
site, what paths to take, how long to spend observing, and 
what kind of measurements to take (cf. Sacks (2003) for a 
related discussion on police patrol, Carbonell (1969) 
regarding human visual scanning of instruments and 
Koopman (1956) regarding submarine-based search). 

Factors specific to aerial vehicles affect what kind 
of algorithms can most effectively make these decisions. 
For instance, Massios et al. (2001) have studied the 
problem of optimizing surveillance for autonomous ground 
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vehicles (UGVs) operating inside buildings. Given their 
assumption that every space in the building is worth 
observing, the problem of deciding where to go next is 
highly constrained by the structure of the building. The 
problem of how to get to a location not immediately 
adjacent requires path-planning. With UAVs, sites of 
interest may all be accessible by a direct path, reducing the 
need for path-planning but offering weaker constraints on 
where to go next. A second factor, wind usually has little 
effect on UGVs, but has a large effect on UAVs, 
increasing or reducing required traverse time between 
almost any two sites. Algorithms for UAV-based 
surveillance should thus treat wind as a critical parameter 
and, ideally, should enable execution-time adaptation to 
changes in wind speed or direction. 

Differences in kinematics and vantage together 
create a third significant difference between UGV- and 
UAV-based surveillance. Because of its altitude, a UAV 
will frequently be able to observe a site fiom a distance 
without obstruction and thus may not have to travel the full 
distance to that site. And, due to the low fi-iictioli on an air 
vehicle in aerodynamic flight, a UAV making “snapshot” 
observations may be able to retain most of its speed when 
transitioning between approach to one site and approach to 
the next. A surveillance algorithm that takes advantage of 
these aviation-specific factors should perform significantly 
better than one that does not. 

Our work on UAV-based surveillance represents 
one part of a larger project to develop a practical and 
flexible UAV observation and data-delivery platform. The 
Autonomous Rotorcraft Project (Whalley et al. 2003) is an 
ArmyINASA collaborative effort combining advanced 
work on avionics, telemetry, sensing, and flight control 
software in addition to software for high-level autonomous 
control. The base platform selected for the project, a 
Yamaha RMAX helicopter, has been enhanced in a variety 
of ways that increase its potential effectiveness as a 
surveillance vehicle. Flight control software allowing it to 
fly aerodynamically extends the vehicle’s speed and 
improves its fuel-efficiency, thus extending both operating 
range and base flight duration (60 minutes hovering with 
full payload). The vehicle includes a range of sensors and 
the capacity to integrate and control additional sensors as 
demanded by particular missions. Its high-level autonomy 
component, Apex (Freed 1998), incorporates reactive 
planning and scheduling capabilities needed for mission- 
level task execution, navigation, response to healthkafety 
contingencies and interaction with human users. To enable 
the system to become highly effective for surveillance, 
scheduling capabilities must be extended based on 
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algorithms of demonstrated effectiveness in diverse 
mission scenarios relevant to the Army and to NASA. 

The diversity of possible surveillance missions 
poses particular challenges. First, an algorithm that 
performs well in certain kinds of missions may perform 
poorly in others. For instance, an algorithm that does well 
optimizing observations for a small number of sites may 
not scale well to missions involving a large number of 
sites. Sknilarly, an algorithm that assumes that 
information obtained at different sites becomes obsolete at 
equal rates or that the value of making an observation at 
one site necessarily equals that at another will not perform 
well when such assumptions do not hold. It is not yet 
well-understood which attributes are most significant in 
distinguishing one mission from another. While the 
number of sites to be observed is clearly an important 
factor, the importance of other factors, e.g. the centrality of 
the takeomland location with respect to the set  of target 
sites, is less clear. Finally, for a single system to provide 
autonomous surveillance capability for a broad range of 
missions requires an underlying theory of surveillance. If 
users need to communicate mission goals in terms of that 
theory, its generality is likely to pose difficulties for most 
users (Freed et al. 2004). For instance, a theoretical 
foundation based on mathematics unfamiliar to most users 
(as will be described below) may require them to specify 
the mission in terms of seemingly exotic mathematical 
parameters. 

These challenges lay out three areas of work: (1) 
developing methods for measuring the effectiveness of a 
given algorithm and for comparing the performance of an 
algorithm to that of human operators (i.e. to current 
practice); (2) creating planning and scheduling algorithms 
that perform surveillance effectively in significant parts of 
the space of possible missions; and (3) addressing issues of 
usability in the specification of missions by non-expert 
users. In this paper, we describe our work in the first of 
these areas to create a framework for evaluating algorithm 
performance and human performance at surveillance tasks. 
We then describe the application of the framework to two 
cases useful as benchmark surveillance approaches - a 
modified Traveling Salesmen Problem (TSP) algorithm 
and human-directed surveillance. 

Measuring Surveillance Performance 
The first issue in devising an evaluation hmework is to 
define what it means to do a good job at surveillance. 
Intuitively, the purpose of surveillance is to return 
information on a set of targets to some user or set of users. 
Performance at the surveillance task will depend on the 
information’s quantity, accuracy, importance and 
timeliness. As will be discussed, there are many 
variations on the general problem. To accommodate the 
diversity of surveillance missions, we start with a very 
general, decision-theoretic formulation of the overall goal: 

to maximize the utility of returned information over a 
defined interval. 

Like Massios et al. (2001), we characterize 
information value in the negative - i.e. in terms of the cost 
of not having observed a target for a given interval rather 
than the benefit of having observed the target at a given 
time. Consider the example of maintaining surveillance 
over a set of buildings, any of which might catch fire at 
any time. Observing the building allows us to call the fire 
department if necessary, and thus limit the amount of 
damage. The longer we go without observing, the more 
likely it is that a fire will have occurred (though the 
probability may still be very small) and the more damage 
any such fire is likely to have inflicted. Thus, the expected 
cost of not observing the building (and thus remaining 
ignorant of its state) for a given interval depends on the 
fire’s probability and expected cost of occurrence. 
Specifically, the expected cost of ignorance (ECI) for 
having not observed a target T during the interval tl to t;? is: 

where p(t) is probability density function for the 
occurrence of some cost-imposing event E (e.g. a fire 
breaking out) and cost(d) is a function describing the 
expected cost imposed 3y E as a hc t ion  of the time from 
occurrence to intervention. In other words, the cost of 
ignorance is the sum, for all points in the interval, of the 
probabiliv of the event occurring at that point! times the 
expected cost if it occurs at that point. If more than one 
kind of event can occur at a target, and the event-types are 
uncorrelatetl, the expected cost of ignorance is simply the 
sum of the ECI values for each. 

Over the course of a surveillance mission, an 
interval running from txrWr to t d ,  expected cost 
accumulates at each targe?. If the target is never observed 
during that period, the total mission ECI for that target is 
determined by the above equation for ECI , with rl=tstnrt 
and t 2 = t d .  Otherwise, observations divide the target’s 
mission timeline into a sequence of intervals I, where the 
target’s total mission ECI equals the sum of ECIs for each 
interval. 

Here we assume expected detectability latency ]a = 0 and refer 
to the time of occurrence of an event rather the time it becomes 
detectable. Values of ]a > 0 can be accommodated by integrating 
from max(0 , tl - lo) rather than from tl. 
* Time t,, represents a reference start  time at which costs begin 
accruing. 
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The effect of observation occurring at tz is to reduce the 
maximum expected cost of an event occurring at t < tt 
from cost(t,d - t )  to cost (t2 -0. This reduces the total 
mission ECI and also constrains its maximum. For 
example, cost@ may asymptote at $5M, corresponding in 
our example to the building burning to the ground. I$ e.g., 
the building is observed every 30 minutes and cost(30 
minutes) is $1M, the ECI over the come of the mission 
for that target cannot exceed $1M. 

With this way of determining the mission ECI for 
a target, the total mission ECI can be defined simply as the 
sum of mission ECIs for all surveillance targets. The 
performance of a surveillance algorithm in a given mission 
is thus measured by its success in minimizing this total 
expected cost. We define ECI ,  as the total mission ECI 
if no targets are observed during the course of a given 
mission and E C L A ~  as the total mission ECI resulting 
from an observation schedule generated by a particular 
method. Thus: 

Modeling a Mission 
The choice of what probability function and what cost 
function to use to model ignorance cost at a given target 
depends on the kind of cost-imposing event(s) that may 
occur there. Some events are once-only, meaning that we 
assume they can occur at most once during the come of a 
mission (e.g. thefl of an item). Others can re-occur serially 
(e.g. a security gate left open which can be closed and then 
left open again) or in parallel (e.g. an individual entering 
an area illegally). Event probability may vary with some 
regular event (e.g. rush hour, nighttime), contingent upon 
some other event (e.g. rain) or may remain constant. For 
the work described here, we have assumed that all events 
are once-only and that occurrence probability (hazard 
function) is constant assuming no prior occurrence. Thus, 
the exponential function I -  e-& describes the probability 
that event E has occurred by time t (assuming the start of 
the mission tSm = 0); its derivative yields the probability 
density functionp(t) = ae4. 

The cost function combines a number of factors. 
Most important is how the physical process initiated by an 
event unfolds and how cost accrues as a result. For 
instance, a building fire may start out slowly, at some point 
begin increasing rapidly in intensity, then eventually taper 
off as flammable material runs out and the cost of the fire 
approaches the total value of the building. This suggests 
an s-shaped cost function such as a sigmoid. Other factors 
include the initial cost co of the event (e.g. from an 
explosion that causes a fire), the maximum cost m that may 
accrue from an event (e.g. the cost of the building plus fire 
cleanup costs), the expected intervention latency lI (e.g. 
how much time it takes firefighters to get to the site and 

put out the fire) and expected reporting latency l2 (e.g. how 
long it takes to get in range to alert firefighters). The work 
described here assumes that all events are modeled using a 
sigmoid normalized to intercept the y-axis (cost) at co and 
to asymptote at m. 

Multiplying the probability and cost functions with initial- 
cost and latency factors factored out for simplicity (co = I ,  
= 12 = 0), we get the ECI equation below for evaluating the 
expected cost of not observing a specified target 
(associated with parameters a, k and m) during the interval 
t l  to t2 (each a displacement from the mission start time 
e o ) .  We omit discussion of the closed-form solution for 
the integral and of how best to compute ECI values. 

ECI, (tl, t2, a, k, m) = fa?-"m( - 1)dt 
1 + 

i = i 1  

From this framework, a clear process emerges for 
how a user can specify mission parameters, apply a 
surveillance decision method and then evaluate the output 
of that method with respect to the mission. The first step is 
to specify the mission. This involves defining a start/end 
location, mission duration, surveillance vehicle (with 
range, kinematics, sensors and other characteristics) and 
set of target locations. Each target is associated with one 
or more events, and each event with parameterized 
probability density and cost functions. Given our 
previously desmied assumptions about these functions, 
users would specify three parameters for each event: a, k 
and m. The value m is simply the maximum (asymptotic) 
cost of the event. To determine the probability rate 
parameter a, a user should specify some reference 
probability interval for the event. For instance, the user 
may specify that the probability of the event is .2 during a 
60 minute interval. Solving for a yields the value .00372. 
To determine the cost rate parameter k, the user should 
specify a reference cost interval such as $1M during the 
first 30 minutes following occurrence. Solving for k yields 
the value .0135. 

Second, after specifying all elements of the 
mission, this information is made available to the agent 
(algorithm or person) responsible for generating a 
surveillance schedule. The agent's output may take the 
form of a repeatable sequence that must be translated into 
a schedule. For example, the sequence ABCAB denotes 
that targets A, B and C will be visited repeatedly and in 
order, skipping C on alternate circuits and breaking off just 
in time to return to the start location before the mission end 
time. A schedule specifying at what times each target is 
observed over the course of the mission can be generated 
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by simulation based on vehicle characteristics, weather and 
map information. The resulting schedule is then used to 
compute as described in the previous section, 
providing a measurement of the expected benefit of 
performing surveillance using a given method. 

Comparative Evaluation Testbed 
In the previous section, we addressed the question of how 
to me'asure the performance of a surveillance method in a 
given mission. The next step is to make it possible to 
compare different methods so as to learn their relative 
strengths and weaknesses. Such comparisons serve two 
important practical purposes. First, the process of 
developing and refining surveillance algorithms depends 
on knowing what weaknesses should be addressed and on 
being able to measure the effect of intended improvements. 
Second, this kind of analysis might allow a system to 
automatically select the best method for a newly defined 
mission by matching to the most appropriate method. 

Comparative analysis requires testing surveillance 
methods against a set of significantly different mission 
types. This raises the question of what features are likely 
to differentially affect the performance of different 
methods. A set of such features would provide a basis for 
classifymg missions into different types and thus for 
creating a stable testbed mission set. Unfortunately, it is 
not altogether clear which are important. It is not clear, for 
example, what features should be considered at all, what 
tradeoffs exist in the design of algorithms that are likely to 
impact sensitivity to a given feature and what features tend 
to vary significantly in missions arising in real operations. 

We have created an initial testbed mission set 
consisting of 243 missions based on 5 feature types 
(dimensions), each with 3 values. Feature types include: 
N, the number of targets to be observed, with possible 
values 4, 8 and 16; spatial scale, representing the size of 
the map in which the mission takes place, with possible 
values ,002, .02 and .2 of the range of the vehicle; spatial 
distribution, the degree to which targets are clustered, 
with possible values of uniform, globular and 2-cluster; 
maxcost distribution, representing the variability across 
targets of the parameter rn, with possible values of fixed, 
uniform, and 2-cluster; and cost rate distribution, the 
variability across targets of the cost rate parameter k: with 
possible values fixed, uniform, and 2-cluster. All missions 
use the mission modeling h e w o r k  described above and 
all have the following features in common: mission 
duration is fured at 60'minutes (the worst-case flight 
duration of our RMAX helicopter); stadend point is 

3 Specific values of m are (10,20,30,40} with 30 used 
when maxcost distribution = fixed. Specific values of k 
are based on (20,40,60,80} minutes to reach .9 maxcost 
with 60 minutes used when cost rate distribution = fixed. 

located at the centroid of mission targets; the probability of 
occurrence of all events is fixed at .2 per hour; and initial 
cost (cg) = detection latency (lo) = response latency ( I , )  = 
reporting latency (ZJ = 0. 

Because we expect to enlarge and refine the 
testbed repeatedly as our understanding of user needs and 
algorithm design tradeoffs grows, we have created 
software that lets us easily create and modify testbeds, and 
~ll~l eva!uztion exFeriEents with bo& algorithms and 
human subjects. The software includes a model of the 
flight characteristics of the RMAX, allowing us to 
accurately compute travel time between targets. This is 
likely to be especially important for evaluating the impact 
of spatial scale, particularly where targets are relatively 
near one another, since turn rate in aerodynamic flight, 
acceleration to cruise speed and other UAV characteristics 
are likely to have large and varying effects on travel time. 

Case Study: TSP vs. Human Performance 
To illustrate the described evaluation framework, we 
describe its application to two surveillance methods. The 
first method is based on a 2-opt exchange algorithm 
(Reinelt 1994) for the Traveling Salesman Problem (TSP). 
The algorithm has been modified in a number of ways in 
order to (a) generate a repeating cycle of visits that start 
and end on a given location but do not visit it in the interim 
and (b) make use of a flight dynamics model requiring that 
travel time between locations is not a constant, but instead 
varies with initial speed, initial tum angle and end turn 
angle. Though these modifications make the algorithm 
more applicable to our surveillance problem, any TSP- 
based approach is likely to perform poorly in many of our 
testbed missions. We selected this method as a simple way 
to illustrate the general approach and because it might 
reasonably perform well in some cases. 

The second method we evaluated was human- 
directed surveillance. A human subject selected 
surveillance paths for each of the 243 mission scenarios in 
our testbed. Each mission was represented graphically as a 
map showing all relevant dimensions. Targets were 
represented as icons colored to indicate cost rate (urgency) 
and with shape vaned to represent maximum cost 
(importance). The startlend (home) point was displayed as 
a distinctive icon and spatial scale as a dotted-line circle 
centered on the home point whose radius represented .002 
of the vehicle's specified flight range. Subjects used a 
mouse to select and modify a route and were allowed as 
much time as they wished on each mission. In contrast to 
the TSP-based method which always attempted to visit all 
targets, humans were allowed to exclude targets from the 
surveillance route if they wished. 

Our initial expectations were that performance 
would vary significantly between the methods based on 
certain strengths and weaknesses. In particular, the TSP 



Pct. Adv. N Spatial 

Scale Rate Cost 2-Cluster Globular Uniform 2-Cluster Globular Uniform 2-Cluster Globular Uniform 
4 8 16 

0.002 Fixed Fixed 0 0 0 0 14 0 6 31 -3 
Clustered 0 0 0 0 16 5 7 29 7 
Uniform 0 0 -1 42 24 5 2 10 10 

Clustered Fixed 0 0 0 0 0 11 0 0 11 
Clustered 0 0 0 0 0 0 0 0 1 
Uniform 0 0 0 0 0 0 0 0 1 

Uniform Fixed 143 47 0 130 19 47 10 93 47 
Clustered 22 28 23 0 12 6 3 8 0 
Uniform 61 20 -2 0 18 7 2 5 9 

0.02 Fixed Fixed 0 0 0 1 1 0 0 1 0 
Clustered 0 0 0 1 1 0 0 1 0 
Uniform 0 0 0 1 1 0 1 2 0 

Clustered Fixed 0 0 0 1 0 0 1 6 0 
Clustered 0 0 0 1 0 0 0 9 1 
Uniform 0 0 0 1 16 0 0 6 0 

Uniform Fixed 0 0 0 1 0 0 2 2 0 
Clustered 0 0 0 1 0 0 2 2 1 
Uniform 0 0 0 1 0 . o  0 2 1 

0.2 Fixed Fixed 1 0 0 0 -1 0 -2 -22 4 
Clustered 1 0 0 -1 5 -1 0 -6 -1 5 3 
Uniform 0 0 -1 -2 4 -8 -5 -1 9 4 

Clustered Fixed 0 0 0 8 0 14 9 -1 10 
Clustered 0 0 0 9 -1 -1 1 11 -14 5 
Uniform 0 0 -1 16 8 3 5 -1 0 4 

Uniform Fixed 3 0 23 14 -7 22 2 -7 10 
Clustered 16 0 23 9 -3 -1 2 9 -1 6 8 
Uniform 23 0 31 15 4 2 -3 -26 5 

~ ~~ 

method, with a computer’s advantages in speed and 
precision, would presumably do well on small scale maps 
where aerodynamic factors would favor complex paths that 
minimize turn angle rather than (only) distance between 
targets. It would likely perform poorly on maps with 
varying max-cost and rate parameters since it could not 
reason about that information. Humans, with natural 
visual-spatial capabilities that exceed any computer-based 
technique, might perform well when targets are spatially 
grouped. And, allowed to exclude targets from the 
surveillance schedule, people would likely perform well on 
maps where non-fixed distributions of max-cost and rate 
make some targets worth skipping and on large scale maps 
where the importance of being selective is especially great. 

Table 1 shows data for all 243 missions. Data 
entries represent the percentage difference in performance 
between the two methods, with positive values indicating 
TSP advantage and negative values human advantage. 
Values outside the range -10% to 10% are in boldface to 
indicate where the greatest differences in performance lie. 

Overall performance was comparable, with TSP 
doing 4.9% better on average. In the human best case, the 
subject outperformed TSP by 26%, whereas the best TSP 
case had a 146% advantage. The latter was almost 
certainly due to human error, as the mission in which it 

occurred was similar to others where the subject performed 
well. This may indicate a phenomenon favoring 
algorithmic methods in general: human tendency to err 
when making surveillance decisions. 

Across the five independent variables, scale and 
cost-distribution stood out as especially significant in 
differentiating human from TSP performance (standard 
deviations of 6.3 and 5.6 respectively). In all 9 cases 
where humans outperformed TSP by at least lo%, scale 
was large (.2). In 24 of 36 (66%) cases where TSP was 
better by at least lo%, scale was small (.002). N was least 
significant (s.d. = 1.3), though 7 of the 9 cases with human 
advantage >= 10% were with N=16. The ability to 
exclude least-important targets is most likely to prove 
valuable in large scale maps with large numbers of targets. 
That human performance was best in those cases suggests 
that this ability was the principal human advantage. 

Contrary to expectations, the TSP performed 
relatively well with non-fixed cost and rate distributions. 
It performed particularly well when the rate distribution 
was uniform, performing at least 10% better in 24 cases. 
Human advantage >= 10% occurred with uniform rate in 3 
cases. Confirming prior expectations, human performance 
was better in cases with spatial structure (globular and 2- 
cluster), especially when N was high - 7 cases with 10% 
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advantage VS. 1 for TSP. This suggests a constraint on the 
conditions in which people will be able to judge which 
targets to exclude. 

This comparative evaluation was designed to test 
and illustrate our technique, not to test true candidate 
methods for inclusion on a UAV. Both methods could 
clearly be improved. The TSP-based algorithm could be 
made more efficient and used for more aggressive 
optimization. n e  humin-directed olethod could be 
improved by training subjects to make better decisions and 
by adding decision support to the interface, conditions 
likely in any genuine operational context. Given the limits 
of our current data, we limit our interpretation of the 
results to the identification of general patterns that deserve 
further study. 

Next Steps 
As described in the first section, a practical and effective 
UAV-based surveillance capability requires efforts in three 
areas. The frrst is to develop means to evaluate and 
compare different surveillance methods. There are 
numerous ways to improve the presented approach. The 
mathematical h e w o r k  should be extended to include 
more event types (e.g. sequentially reoccurring), more 
event features (e.g. detection latencies) and more diverse 
probability and cost functions. The mission testbed should 
be refined and extended to include additional features and 
a greater range of values for each feature type (e.g. 
N=lOO). The capabilities of human-directed surveillance 
should be further explored to characterize performance at 
high levels of expertise. And the whole framework should 
be extended to accommodate multiple surveillance agents 
including not only multiple UAVs, but also heterogeneous 
human and robotic observers. 

The second area of work is to develop new and 
better surveillance algorithms, iteratively refining them 
based on comparative analyses of their strengths and 
weaknesses. A particularly important class of algorithms 
are those that make andor modify surveillance decisions at 
execution-time in response to changing conditions (e.g. 
wind shifts, changes in user information needs). Though 
our framework has been desmied as a way to evaluate 
surveillance schedules prior to execution and without 
regard to such changes, it applies equally to post-hoc 
evaluation of schedules generated reactively (at execution- 
time) in response to unfolding events. As significant 
changes in physical conditions and user needs are likely to 
occur frequently in realistic missions, we anticipate that 
this framework will ultimately be more useful for 
evaluating reactive surveillance methods than for methods 
that schedule exclusively in advance. In particular, we 
anticipate applying it to assess ongoing scheduler 
enhancements to the Autonomous Rotorcraft Project 
helicopter’s mission-level autonomy component (Apex). 

Finally, these approaches must be made “usable” 
in real operational contexts where limits on time, 
knowledge and user expertise are likely to constrain 
interactions with the surveillance agent. On issue of 
particular concern is to enable users without a background 
in decision-theory or mathematics to specify mission 
parameters. Though users may be experts in the 
operational domain, eliciting the required utility and 
probability knowledge from them is notoriously difficult, 
though useful techniques exist (French 1986) and continue 
to emerge (Wang and Boutilier, 2003). 
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